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CASE-BASED DECISION THEORY*

ITzHAK GILBOA AND DAVID SCHMEIDLER

This paper suggests that decision-making under uncertainty is, at least partly,
case-based. We propose a model in which cases are primitive, and provide a simple
axiomatization of a decision rule that chooses a “best” act based on its past
performance in similar cases. Fach act is evaluated by the sum of the utility levels
that resulted from using this act in past cases, each weighted by the similarity of
that past case to the problem at hand. The formal model of case-hased decisian
theary naturally gives rise to the notions of satisficing decisions and aspiration
levels.

In reality, all arguments from experience
are founded on the similarity which we
discover among natural ohjects, and by
which we are induced to expect effects
similar to thase which we have found to
follow from such ohjects. . .. From causes
which appear similar we expect similar
effects. This is the sum of all our experimen-
tal conclusions (Hurme 1748].

I. INTRODUCTION

Expected utility theory enjoys the status of an almost unri-
valed paradigm for decision-making in the face of uncertainty.
Relying on such sound foundations as the classical works of
Ramsey [1931], de Finetti [1937], von Neumann and Morgenstern
[1944], and Savage [1954], the theory has formidable power and
elegance, whether interpreted as positive or normative, for situa-
tions of given probabilities (“‘risk”) or unknown ones (“uncer-
tainty”’) alike.
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While evidence has been accumulating that the theory is too
restrictive (at least from a descriptive viewpoint), its various
generalizations only attest to the strength and appeal of the
expected utility paradigm. With few exceptions, all suggested
alternatives retain the framework of the model, relaxing some of
the more “demanding”’ axioms while adhering to the more “bagic”
ones. (See Machina [1987], Harless and Camerer [1994], and
Camerer and Weber [1992] for extensive surveys.)

Yet it seems that in many situations of choice under uncer-
tainty, the very language of expected utility models is inappropri-
ate. For instance, in many decision problems under uncertainty,
states of the world are neither naturally given, nor can they be
simply formulated. Furthermore, often even a comprehensive list
of all possible outcomes is not readily available or easily imagined.
The following examples illustrate.

Example 1. As a benchmark, we first consider Savage’s fa-
mous omelet problem [Savage 1954, pp. 13-15]: Savape is making
an omelet using six eggs. Five of them are already opened and
poured into a bowl. He is holding the sixth and has to decide
whether to pour it directly into the bowl, or to pour it intc a
separate, clean dish to examine its freshness. This is a decision
problem under uncertainty, because Savage does not know whether
the egg is fresh or not. Moreover, uncertainty matters: if the egg is
fresh, he will be better off pouring it directly into the howl, saving
the need to wash another dish. On the other hand, a rotten egg
would result in losing the five eggs already in the howl; thus, if the
egg is not fresh, he would prefer to pour it into the clean dish.

In this example, uncertainty may be fully described by two
states of the world: ““the egg is fresh” and “the egg isn't fresh.”
Fach of these states “‘resolves all uncertainty’’ as prescribed by
Savage. Not only are there relatively few relevant states of the
world in this example, they are also “naturally” given in the
description of the problem. In particular, they can he defined
independently of the acts available to the decision-maker. Further-
mote, the possible outcomes can be easily defined. Thus, this
example falls neatly into “decision-making under uncertainty’ in
Savage's model.

Example 2. A couple has to hire a nanny for their child. The
available acts are the various candidates for the job. The agents do
not know how each candidate would perform if hired. For instance,
each candidate may turn out to be negligent or dishonest. Coming
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to think about it, they realize that other problems may also occur.
Some nannies are treating children well, but cannot be trusted
with keeping the house in order. Others appear to be just perfect on
the job, but are not very loyal and may quit the job on short notice.
The couple is facing uncertainty regarding the candidates’
performance on several measures. However, there are a few
difficulties in fitting this problem into the framework of expected
utility theory (EUT). First, imagining all passible outcomes is not a
trivial task. Second, the “states of the world” do not naturally
suggest themselves in this problem. Furthermore, if the agents
should try to construct them analytically, their number and
complexity would be daunting: every state of the world should
specify the exact performance of each candidate on each measure.

Example 3. President Clinton has to decide on military inter-
vention in Bosnia-Herzegovina. (A problem that he is facing while
this paper is being written, revised, and re-revised.) The alternative
acts are relatively clear: one may do nothing; impose economic
sanctions; use limited military force (say, only air strikes), or opt
for a full-blown military intervention. Of course, the main problem
is to decide what are the likely short-run and long-run outcomes of
each act. For instance, it is not exactly clear how strong are the
military forces of the warring factions in Bosnia; it is hard to judge
how many casualties each military option would involve, and what
would be the public opinion response; there is some uncertainty
about the reaction of Russia, especially if it goes through a military
coup.

In short, the problem is definitely one of decision under
uncertainty. But, again, neither all possible eventualities, nor all
possible scenarios are readily available. Any list of autcomes or of
states is bound to be incomplete. Furthermore, each state of the
waorld should specify the result of each act at each point of time.
Thus, an exhaustive set of the states of the world certainly does not
naturally pop up.

In example 1, expected utility theory seems a reasonable
description of how people think about the decision problem. By
contrast, we argue that in examples such as 2 and 3, EUT does not
describe a plausible cagnitive process. Should the agent attempt to
“think” in the language of EUT, she would have to imagine all
possible outcomes and all relevant states. Often the definition of a
state of the world would involve conditional statements, attaching
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outcomes to acts. Not only would the number of states be huge, the
states themselves would not be defined in an intuitive way.

Moreover, even if the agent managed to imagine all outcomes
and states, her task would by no means be dane. Next she would
have to assess the utility of each outcome, and to form a prior over
the state space. It is not clear how the utility and the prior are to be
defined, especially since past experience appears to be of limited
help in these examples. For instance, what is the probability that a
particular candidate for the job in example 2 will end up being
negligent? Or being both negligent and dishonest? Or, considering
example 3, what are the chances that a military intervention will
develop into a full-blown war, while air strikes will not? What is the
probability that a seenario that na expert predicted will eventually
materialize?

It seems unlikely that decision-makers can answer these
questions. Expected utility theory does not describe the way people
“really” think about such problems. Correspondingly, it is doubt-
ful that EUT is the most useful tool for predicting behavior in
applications of this nature. A theory that will provide a more
faithful description of how people think would have a better chance
of predicting what they will do. How do people think about such
decision problems, then? We resort to Hume [1748], who argued
that “From causes which appear similar we expect similar effects.
This is the sum of all our experimental conclusions.”” That is, the
main reasoning technique that people use is drawing analogies
between past cases and the one at hand.!

Applying this idea to decision-making, we suggest that people
choose acts based on their performance in similar problems in the
past. For instance, in example 2 a common, and indeed very
reasonable, thing to do is to ask each candidate for references.
Every recommendation letter provided by a candidate attests to
his/her performance (as a nanny) in a different problem. In this
example, the agents do not rely on their own memory; rather, they
draw on the experience of other employers. Each past “case” would
be judged for its similarity; for instance, serving as a nanny to a
month-odd toddler is somewhat different from the same job when a

1. We were first exposed to this idea as an explicit theory in the form of
cage-based reasoning [Schank 1986; Riesheck and Schank 1989], to which we owe
the epithet “case-hased.” Needless to say, our thinking aboeut the problem was
partly inspired by case-based reasoning. At this early stage, however, there does not
seern to he much in common—heyond Hume’s hasic idea—between our theory and
case-based reasoning. [t should he mentioned that similar ideas were also expressed
in the economics literature by Keynes [1921], Selten [1978], and Cross [1983].
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two-year-old child is concerned. Similarly, the house, the neighbor-
hood, and other factors may affect the relevance of past cases to the
problem at hand. Thus, we expect the agents to put more weight on
the experience of people whose decision problem was ‘‘more
similar’ to theirs. Furthermore, they may rely more heavily on the
experience of people they happen to know, or judge to have tastes
similar ta their own.

Next consider example 3. While military and political experts
certainly do try to write down possible “scenarios’ and to assign
likelihood ta them, this is by no means the only reasoning
technique used. (Nor is it necessarily the most compelling a priori
or the most successful a posteriori.) Very often the reasoning used
is by analogies to past cases. For instance, proponents of military
intervention tend ta cite the Gulf War as a “‘successful’” case. They
stress the similarity of the two problems, say, as local conflicts in
post-cold-war world. Opponents adduce the Vietnam War as a case
in which military intervention is generally considered to have been
a mistake. They also point to the similarity of the cases, for
instance to the “peace-keeping mission’’ mentioned in hoth.

Specifically, we suggest the following theory, which we dub
“case-based decision theory” (CBDT). Assume that a set of “prob-
lems” is given as primitive, and that there is some measure of
similarity on it. The prablems are to be thought of as descriptions
of choice situations, as ‘“‘stories” inveolving decision problems.
Generally, an agent would remember some of the problems that
she and other agents encountered in the past. When faced with a
new problem, the similarity of the situation brings this memory to
mind, and with it the recollection of the choice made and the
outcome that resulted. We refer to the combination of these
three—the problem, the act, and the result-—as a case. Thus,
“similar’ cases are recalled, and based on them each possible
decision is evaluated. The specific model we propose and axiomatize
here evaluates each act by the sum, over all cases in which it was
chosen, of the product of the similarity of the problem to the one at
hand and the resulting utility. (Utility will be assumed scaled such
that zero is a default value.)

Formally, a case is a triple {q,a,r), where ¢ is a problem, a is an
act, and r a result.? Let M, the memary, be a set of such cases. A

2. We implicitly assume that the description of a problem includes the
specification of available acts. In particular, we da not address here the problem of
identifying which acts are, indeed, available in a given problem, or identifying a
decision prohlem in the first place.
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decision-making agent is characterized by a utility function u,
which assigns a numerical value to results, and a similarity
function s, which assigns nonnegative values to pairs of prohlems.
When faced with a new problem p, our agent would choose an acta
which maximizes

() Uta) = Upyla) = 2, s(p,gulr),
(g.a,rEM
where the summation over the empty set is taken to yield zero.

In CBDT, as in EUT, acts are ranked by weighted sums of
utilities. Indeed, this formula so resembles that of expected utility
theory that one may suspect CBDT to be no more than EUT in a
different guise. However, despite appearances, the two theories
have little in common. First, note some mathematical differences
between the formulae. In CBDT there is no reason for the
coefficients s{p,’) to add up to 1 or to any other constant. More
importantly, while in EUT every act is evaluated at every state, in
CBDT each act is evaluated over a different set of cases. To be
precise, if @ = b, the set of elements of M summed over in Ula) is
disjoint from that corresponding to Uth). In particular, this set may
well be empty for some a's.

On a more conceptual level, in expected utility theory the set of
states is assumed to be an exhaustive list of all possible scenarios.
Each state “‘resolves all uncertainty,” and, in particular, attaches a
result to each availahle act. By contrast, in case-based decision
theory the memory contains only those cases that actually hap-
pened. Each case provides information only about the act that was
chosen in it, and the evaluation of this act is based on the actual
outcome that resulted in this case. Hence, to apply EUT, one needs
to engage in hypothetical reasoning, namely to consider all possible
states and the outcome that would result from each act in each
state. To apply CBDT, no hypothetical reasoning is required.

As opposed to expected utility theory, CBDT does not distin-
guish between “‘certain’ and ‘‘uncertain'’ acts. In hindsight, an
agent may observe that a particular act always resulted in the same
outcome (i.e., that it seems to ““involve no uncertainty’’), or that it
is uncertain in the senge that it resulted in different outcomes in
similar problems. But the agent is not assumed to “‘know’’ a priori
which acts invalve uncertainty and which do not. Indeed, she is not
assumed to know anything about the outside world, apart from
past cases.

CBDT and EUT also differ in the way they treat new informa-
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tion and evolve over time. In EUT new information is modeled as
an event, i.e., a subset of states, which has obtained. The model is
restricted to this subset, and the probability is updated according to
Bayes’ rule, By contrast, in CBDT new information is modeled
primarily by adding cases to memory. In the basic model, the
similarity function calls for no update in the face of new informa-
tion. Thus, EUT implicitly assumes that the agent was barn with
knowledge of and beliefs over all possible scenarios, and her
learning consists of ruling out scenarios which are no longer
possible. On the other hand, according to CBDT, the agent was
born completely ignorant, and she learns by expanding her memory.
(In the sequel we will also briefly discuss learning that is reflected
in changes of the similarity judgments.) Roughly, an EUT agent
learns by ohserving what cannot happen, whereas a CBDT agent
learns by obhserving what can.

The framework of CBDT provides a natural way to formalize
both the idea of frequentist belief formation (insofar as it is
reflected in behavior) and the idea of satisficing. Although beliefs
and probabilities da not explicitly exist in this model, in some cases
they may be implicitly inferred from the number of summands in
{=). That is, if the decision-maker happens to choose the same act in
many similar cases, the evaluation function (+) may be interpreted
as gathering statistical data, or as forming a frequentist prior.
However, CBDT does not presuppose any a priori beliefs. Actual
cases generate statistics, but no beliefs are assumed in the absence
of data.

If an agent faces similar problems repeatedly, it is natural to
evaluate an act by its average past performance, rather than by a
mere summation as in (). Both decision criteria can be thought of
as performing “implicit” induction: they are ways to learn from
past cases which decision should be made in a new problem. A
cage-hased decigion-maker does not explicitly formulate ““‘rules.”
She could never arrive at any ‘“knowledge” regarding the future.
{Indeed, this is also in line with Hume’s teachings.) But she may
come to behave as if she realized, or at least believed in certain
regularities.

Case-based decisions may result in conservative or uncertainty-
averse behavior. For example, if each act & € A only ever results in
a particular outcome r,, then the agent will only try new acts until
she finds one that vields u(r,) > 0. Thereafter, she will choose this
act over and over again. She will be satisfied with the “reasonable’
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act a (so defined by U{a) > 0), and will not attempt to maximize her
utility funetion u. Thus, CBDT has some common features with
the notion of “satisficing’’ decisions of Simon [1957] and March
and Simon [1958], and may be viewed as formalizing this idea.
Specifically, the number zero on the utility scale may be inter-
preted as the agent’s ‘“aspiration level”’: so long as it is not reached,
she keeps experimenting; once this level is obtained, she is
satisficed.

Further discussion may prove more useful after a formal
presentation of our model, axioms, and results. We devote Section
IT to this purpose. In Section III we discuss the model and its
axiomatization. Further discussion, focusing on the comparison of
CBDT to EUT, is relegated to Section IV. Section V presents some
economic applications. In Section VI we suggest some variations on
the basic theme, and discuss avenues for further research.

II. THE MODEL

Let P and A be finite and nonempty sets, of problems and of
acts, respectively. To simplify notation, we will assume that all the
acts A are available at all problems p € P. It is straightforward to
extend the model to deal with the more general case in which for
each p € P there is a subset A, C A of available acts. Let R he a set
of outcomes or results. For convenience, we include in R an
outcome ry to be interpreted as “‘this act was not chosen.” The set
ofcasesisC =P x A X R.

Given a subset of cases M C C, denote its projection on P by H.
That is,

H=HM) = (g € P|3a € Ar € R, such that (g,a,r) € M|.
H will be referred to as the histbry of problems.

A memory is a subset M C C such that
(i) for every g € H{M) and a € A, there exists a unique r =
ri(g,a) such that (g,a,r) €M,

(ii) for every g € H(M) there ig a unique ¢ € A for which

rlg.a) = rg.

A memory M may be viewed as a function, assigning results to
pairs of the form (problem,act). For every memory M, and every
g € H = H(M), there is one act that was actually chosen at g—with
an ocutcome r # rq defined by the past case—and the other acts will
be assigned ry.
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The definition of memory makes two implicit simplifying
assumptions, which entail no loss of generality: first, we assume
that no problem p € P may be encountered more than once.
However, the fact that two formally distinct problems may be
“practically identical”’ (as far as the agent is concerned) can be
reflected in the similarity function. Second, we define memory to be
a set, implying that the order in which cases appear in memory is
immaterial. Yet, if the description of a problem is informative
enough, for instance, if it includes a time parameter, a set is as
informative as a sequence.

To simplify exposition, we will henceforth assume (explicitly)
that R = .# (the reals) and (implicitly) that it is already measured
in “utiles.” That is, our axioms should be interpreted as if K were
scaled so that the “utility”’ function be the identity. Furthermore,
we will assume that ry = 0. (See Section I1I for a discussion of these
assumptions.) We do not distinguish between the actual outcome 0
and r, In particular, it is possible that for some ¢ € H(M),
rufg.a) =0=ryforalla € A,

Though by no means necessary, it may be helpful to visualize a
memory, which is a function from A X H to &#, as a matrix. That is,
choosing arbitrary orderings of A and of H = H(M), a memory M
can also be thought of as a (¢ x n)-real-valued matrix, in which the
k = |A| rows correspond to acts, and the n = [H| columns—to
problems in H. In such a matrix every calumn contains at most one
nonzero entry. Conversely, every (k X n)-matrix which satisfies
this condition corresponds to some memory M’ with HM') = H.
Thus, every such matrix may be viewed as a conceivable memory,
which may differ from the actual one in terms of the acts chogen at
the various problems, as well as the results they yielded.

We assume that, when the agent has memory M and is
confronted with problem p, she chooses an act in accordance with a
preference relation >, € A x A. We further assume that the
evaluation of an act is based only on the outcomes which resulted
from the act. This assumption has two implications. First, for a
given memory, each act may be identified with its “‘act profile,”
that is, with a vector in #¥, specifying the results it yielded in past
problems. Thus, a memory matrix M induces a preference order
over k vectors in ", namely, its rows.

Second, we require that the preference hetween two real-
valued vectors not depend on the memory which contains them.
Formally, for x,y € %%, assume that M and M’ are such that
HM) = H(M’) = H, and that each of x and y corresponds to a row
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in the matrix M and to a row in the matrix M'. Then we require
thatx >, yyiffx =, y.

Under these assumptions we can simply postulate a preference
order >,y on #H, which depends only on p and the observed
problems H (p & H). One interpretation of this preference order is
that the agent can not only rank acts given their actual profile, but
also provide preferences among hypothetical act profiles. (See a
discussion of this point in the following section,)

However, we will not assume that >, 4 is a complete order on
#H. Consider two distinet act profiles x,y € %, assigning x(q) = 0
and y(¢q) # 0, respectively, to some g € H. Naturally, these cannot
be compared even hypothetically: for any memory M, at most one
act may be chosen in problem g, and therefore at mast one act may
have a value different from 0 in its act profile for any given q. In
other words, there is no memory matrix in which both x and y
appear as rows. We therefore restrict the partial order >,y to
compare act profiles which are compatible in the sense that they
could appear in the same memory matrix. Formally, given x,y € X,
let x*y € %1 he defined as a coordinatewise product; i.e., (x+y)(g) =
x{g)y(q) for ¢ € H. Using this notation, two act profiles x,y are
compatible if x*y = 0orx = y.

Our first axiom states that compatibility is necessary and
sufficient for comparability. Since compatibility is not a transitive
relation, this axiom implies that neither is >, 5.

Al. COMPARABILITY OF COMPATIBLE PROFILES, For everyp € Pand
every history H = H(M), for every x,¥ € #H x and y are
compatibleiffx >, gyory >, 5x.

The following three axioms will guarantee the additively
separable representation of >, g on 5,

A2 Monortonicrty. For every p H, x = y and x*y = 0 implies that
X ZaHY-
A3. Contmnuity. For every p H, and x € #¥ the sets

{[ye F|y z,px] and {y € #|x >, 4] are closed (in the
standard topology on 7).

A4, SEPARABILITY. For every p,H and x,y2zw € 2H, if
&k +2)x(y+w)=0x2,py,andz =,y w,then (x +2) >, 4
{y + w).

A2 is a standard monotonicity axiom. It will turn out to imply
that the similarity function is nonnegative, Without it one may
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obtain a numerical representation as in () where the similarity
funection is not constrained in sign. A8 is a continuity axiom. It
guarantees that, if x, >, 5 y and x, — x, then x =,y y also holds
(and similarly x; <,y impliesthatx <, g y).

From a conceptual viewpoint, the separability axiom A4 is our
main assumption. It states that preferences can he “‘added up.”
That is, if two act profiles, x and z, are (weakly) preferred to two
athers, y and w, respectively, then the sum of the former is (weakly)
preferred to the sum of the latter, provided that such preferences
are well defined. It is powerful enough to preclude cyclical strict
preferences. Moreover, A4 will play a crucial role in showing that
the numerical representation is additive across cases, as well as
that the effect of each past case may be represented by the product
of the utility of the result and the similarity of the problem.

We do not attempt to defend A4 as “universally reasonable.”
On the contrary, we readily agree that it may be too restrictive for
some purposes.® For instance, one may certainly consider an
additive functional with a case-dependent utility, as in theories of
state-dependent expected utility theory, or a nonseparable fune-
tional. Alternatively, one may allow the similarity function to be
modified according to the results that the agent has experienced.
For the time heing we merely offer an axiomatization of a
case-based decision theory, which may be viewed as a “‘first
approximation.’”’ The main role of the axioms above is not to
convince the reader that our theory is reasonahle. Rather, our main
goal is to show that the theoretical concept of “‘similarity,”
combined with U-maximization, is in principle derivable from
observed preferences.

The first result can finally be presented.

THEOREM 1. The following two statements are equivalent:

(i) Al-A4 hold;
(ii) For every p € P and every H there exists a function

Spy  H—> A,
x>,y i D Su@x@) = X s, 4@y
gl q=H

for all compatible x,y € ¥,

3. Note, however, that A4 may appear very reatrictive partly because of our
simplifying assumption that results are represented by utiles.
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Furthermore, in this case, for every p,H, the function s,y is
unique up to multiplication by a positive scalar.

Setting s(p,q) = s, 4(q), Thearem 1 gives rise to U-maximiza-
tion for a given set of problems H. That is, considering the actual
memory M the agent possesses at the time of decision p, she would
choose an act that maximizes the formula () with s(p,q) = 5, 4(g)
and H = H(M). However, this similarity function may depend on
the set of prohlems H. The next axiom ensures that the similarity
measure is independent of memory. Specifically, A5 compares the
relative importance of two problems, ¢, and g5, in two histories, H!
and H?, Tt requires that the similarity weights assigned to these
problems in the two histories be proportional.

AD. SIMILARITY INVARIANCE. For every p,g,,g; € P and every two
memories M/, M with q,,q, EH' = HM') ¢ = 1,2) and p & H*
(i =1,2), let v; stand for the unit vector in FH (i =1,2)
corresponding to g; (7 = 1,2). (That is, v} is a vector whose g;th
component is 1 and its other components are 0.) Then,
denoting the symmetric part of =, gy by =, z,

vy € R zwe FH x =Y gl
and
x4+ o} =, my + pug
imply that
z+ av? = a2 W T pu?
whenever the compared profiles are compatible.

Equipped with A5, one may define a single similarity function
that represents preferences given any history.

TeEOREM 2. The following two statements are equivalent:

{i) A1-A5 hold.

(ii) There exists a function s:P? — [0,1] such that for all p € P,
every memory M with p & H = H(M) and every compat-
ible x,y € #H,

xzopy it s(pa)x@) = 2 s(pa)y(Q).
qeH gEH

Furthermore, in this case, for every p, the function s(p,") is
unique up to multiplication by a positive scalar,
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Note that the decision rule axiomatized here is U/-maximiza-
tion as discussed in the introduction. The proafs of both theorems
are given in Appendix 1.

II1. D1IscUssION

I11.1. The Model

Subjective Similarity. The similarity function in our model is
derived from preferences, and is thus “subjective.”” That is,
different individuals will typically have different preferences, which
may give rise to different similarity functions, just as preferences
give rise to suhjective probability in the works of de Finetti [1937]
and Savage [1954]. Yet, for some applications one may wish to have
a notion of “objective similarity,” comparable to ‘‘objective
probability.”

Anscombe and Aumann [1963] define ohjective probability asa
nickname for a subjective probability measure, which happens to
he shared by all individuals involved. By a similar token, if the
subjective similarity functions of all relevant agents happen to
coincide, we might dub this common function objective similarity.
Alternatively, one may argue that ohjectivity of a certain cognitive
construct—such as probability or similarity—entails more than a
mere (and perhaps coincidental) identity of its suhjective counter-
part across individuals. Indeed, some feel that ohjectivity requires
some justification. Be that as it may, objective similarity is in
particular also the subjective similarity of those individuals who
accept it.

For purposes of objective similarity judgments, as well as for
normative applications, our similarity function may he too permis-
sive. For instance, we have not required it to be symmetric. One
may wonder under what conditions can the similarity function
s(p,-} of Theorem 2 be rescaled (separately for each p) so that
s(p,q) = s(q,p) for all p,g € P. It turns out that a necessary and
sufficient condition is that for all p,g,r € P,

s(p,q)s(g,r)s(rp) = s(pristrg)sig.p).

(Note that this condition does not depend on the choice of s(p,-),
s(g,), and s(r,").)* However, in view of psychological evidence

4. This condition ean be translated to original data, namely, to observed
preferences. Such a formulation will be more cumbersome without offering any
theoretical advantage. Since the similarity functions are derived from preferencesin
an essentially unique manner, we may use them in the formulation of additional
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[Tversky 1977], this can be unduly restrictive for a descriptive
theory of subjective similarity.

Other Interpretations. In the development of CBDT we ad-
vance a certain cognitive interpretation of the funections u and s.
However, the theory can also accommodate alternative, behavior-
ally equivalent. interpretations. First, consider the function u. We
assumed that it represents fixed preferences, and that memaory
may affect choices only by providing information about the u-value
that certain acts yielded in the past. Alternatively, one may suggest
that memory has a direct effect on preferences. According to this
interpretation, the utility function is the aggregate U, while the
function u describes the way in which I7 changes with experience.
For instance, if the agent has a high aspiration level—correspond-
ing to negative u values—she will like an option less, the more she
used it in the past, and will exhibit change-seeking behavior. On
the other hand, a low aspiration level—positive z values—waould
make her “happier” with an aption, the mare she is familar with it,
and would result in habit formation. In Gilboa and Schmeidler
[1993] we develop a model of congumer choices based on this
interpretation.

The function s can also have more than one cognitive interpre-
tation. Specifically, when the agent is faced with a decision
problem, she may not recall all relevant cases. The probability that
a case be recalled may depend on its salience, the time that elapsed
since it was encountered, and so forth. Thus, our function s should
probably be viewed as reflecting both probability of recall and
“intrinsic’’ similarity judgments.®

When “behavior” is understood to mean ‘“revealed prefer-
ence’’ {as opposed to, say, speech), one probably cannot haope ta
disentangle various cognitive interpretationg based on behavioral
data. Whereas specific applications may favor one interpretation
over another, predictions of behavior would not depend on the
cognitive interpretation chosen.

Hypothetical Cases. Consider the following example, An agent
has to drive to the airport in one of two ways. When she geta there
safely, she learns that the other road was closed for construction. A

axioms without compromising the behavioral content of the latter. Indeed, A5 cauld
also be more elegantly formulated in terms of the derived similarity functions.

5. Some readers expressed preference for the terms “‘relevance’ or “weight.”
over “similarity.” Others insisted that we should use “payoff’ rather than
“utility.” We find these alternative terms completely acceptable.
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week later she is faced with the same problem. Regardless of her
aspiration level, it seems obvious that she will choose the same road
again. (Road constructions, at least in peychologically plausible
madels, never end.)

Thus, relevant cases may also be hypothetical, or counterfac-
tual. (“If I had taken the other way, I would never have made it.””)
Hypothetical cases may endow a case-based decision-maker with
reasoning abilities she would otherwige lack. It seems that any
knowledge the agent possesses and any conclusions she deduces
from it can, inagmuch as they are relevant to the decision at hand,
be reflected by hypothetical cases.

Average Performance. The functional U gathers data in an
additive way. For instance, assuming that all problems are equally
similar, an act that was tried ten times with a u-value of 1 will be
ranked higher than an act that was tried only once and resulted ina
u-value of 5. One may therefore be interested in a decision rule that
maximizes the following functional:

(%) Via) = E $'(p.Qulr),
{g st
where
_ s(p@)  if well defined
s'(pg) = { 2w anem 8(Pg’)
0 otherwise

and s(p,q) is the similarity function of Section II. According to this
formula, for every act a the similarity coefficients s'(p,q) add up to
one (ot to zera). Note that this similarity function depends not only
on the problem encountered in the past, but also on the acts chosen
at different problems.

Observe that V is discontinuous in the similarity values at
zero. For example, if an act a was chosen in a single problem g and
resulted in a very desirable outcome, it will have a high V-value as
long as s(p,g) > 0 but will be considered a “new act,” with zero
V-value, if s{p,g) = 0. In the Bosnia example, for instance, V
maximization may lead to different decisions depending on whether
the Gulf War is considered to be “remotely relevant” or “com-
pletely irrelevant.”’é By contrast, the functional U is continuous in
the similarity values.

6. Observe, hawever, that discantinuity can anly oceur if all past cases are at
most remaotely relevant.
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Of special interest is the case where s(p,q) = 1 forall p.g € P.
In this case, V is simply the average utility of each act. The
condition s{-,’) = 1 means that, at least as far as the agent’s
preferences reveal, all problems are basically identical. In thig cage,
this variant of case-based decision theory is equivalent to “frequen-
tist expected utility theory”': the agent chooses an act with maximal
“expected”’ utility, where the outecome distribution for each act is
agsumed to be given by the observed frequencies. (Note also that in
this particular model the digcontinuity at s(-,) = 0 does not pose a
problem, since s(-,-} = 1.) In Appendix 2 we provide an axiomatiza-
tion of V-maximization.

The Definition of Acts. Case-based decision-makers may ap-
pear to be extremely conservative and boring creatures: once an act
achieves their aspiration level, they stick to it. Our agent, it would
seem, is an animal that always eats the same food at the same
place, chooses the same form of entertainment (if at all}, and so
forth.

Although this is true at some level of description, it dees not
have to be literally true. For instance, the act that is chosen over
and over again need not be “Have lunch at X"'; it may also be “Have
lunch at a place I did not visit this week.” Repetition at this level of
description will obviously generate an extremely diverse lunch
pattern.,

T2 The Axiomatization

Observability of Preferences and Hypothetical Questions.
Whenever we encounter our agent, she has a certain memory M
and can only exhibit preferences complying with >,,. It is
therefore natural to ask, in what sense is the relation =,
observable?

An experimenter may try to access the agent’s preferences for
different memories by confronting her with (i) counterfactual
choices among acts, or (ii) actual choices among ‘“‘strategies.” In
the first cage, the agent may be asked to rank acts not only based on
their actual act profiles, but also based on act profiles they may
have had. Thus, she may be asked, “Assume act a yielded r in
problem g. Would you still prefer it to act 5?7 In the second case,
the agent may only be given the set of problems H, and then he
asked to choose a strategy, that is, to make her choice contingent
upon the act profiles which were not revealed to her,

In both procedures, one may distinguish between two levels of
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hypothetical (or conditional) questions. Suppose that the agent
prefers act @ to b, and consider the following types of questions.
I. Remember the case ¢ = (p,a,r), where you chose a and got
r? Well, assume that the outcome were £ instead of r. Would
you still prefer ¢ to b?
II. Remember the case ¢ = (p,a,r) where you chose ¢ and got
r? Well, now imagine you actually chose another act ¢’ and
received . Would you still prefer @ to b? How about a’ to b?
In Section II we implicitly assumed that questions of both
types can be meaningfully anawered. Yet one may argue that
questions of type II are too hypothetical to serve as foundations of
any behavioral decision theory. While the agent has no control over
the outcome r, she may insist that in problem p she would never
have tried act ¢’ and that the preference question is meaningless.
Appendix 2 presents a model in which answers to questions
only of the first type are assumed. We provide an axiomatic
derivation of the linear evaluation functional with a similarity
funetion which, unlike that in Theorem 1, depends not only on the
problems encountered, H, but also on the actions that were chogen
in each. This more general functional form allows us to axiomatize
V-maximization as a special case.

Derivation of Utility. The axiomatization provided here presup-
poses that the set of results is &, and that results are measured in
utiles, namely, that the utility function is linear. Thus, our
axiomatic derivation of the notion of similarity and the CBDT
functional relies on a supposedly given notion of utility, in a
manner that parallels de Finetti’s [1937] axiomatization of subjec-
tive probability together with expected utility maximization. Need-
less to say, the concept of a utility function is also a theoretical
construct that calls for an axiomatic derivation from observable
data. Ideally, one would like to start out with a model that
presupposes heither similarity nor utility, and to derive them
simultaneously, in conjunction with the CBDT decision rule. Such
a derivation would also highlight the fact that the utility function,
like the similarity function in Theorem 1, may, in general, depend
on p,H. However, to keep the axiomatization simple, we do not
follow this track here.

IV. CBDT anp EUT

Complementary Theories. We do not consider case-based deci-
sion theory “better”’ than or as a substitute for expected utility
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theory. Rather, we view them as complementary theories. The
classical derivation of EUT, as well as the derivation of CBDT in
this paper, are behavioral in that the theoretical constructs in these
moadels are induced by observable (in principle) choices. Yet the
scope of applicability of these theories may be more accurately
delineated if we attempt to judge the psychological plausibility of
the various constructs. Two related critieria for classification of
decision problems may be relevant. One is the problem’s descrip-
tion; the second is its relative novelty. _

If a problem is formulated in terms of probabilities, for
instance, EUT is certainly a natural choice for analysis and
prediction. Similarly, when states of the world are naturally
defined, it is likely that they would be used in the decision-maker’s
reagoning process, even if a (single, additive) prior cannot be easily
formed. However, when neither probabilities nor states of the
warld are salient (or easily accessible) features of the problem,
CBDT may be more plausible than EUT.

We may thus refine Knight's [1921] distinction between risk
and uncertainty by introducing a third category of “ignorance’:
risk refers to situations where probabilities are given; uncertainty
to situations in which states are naturally defined, or can be simply
congtructed, but probabilities are not. Finally, decision under
ignorance refers to decigion problems for which states are neither
(i) “naturally given” in the problem nor (ii) can they be easily
constructed by the decision-maker. EUT is appropriate for decision-
making under rigk. In the face of uncertainty (and in the absence of
a subjective prior} one may still use those generalizations of EUT
that were developed to deal with this problem specifically, such as
nonadditive probabilities [Schmeidler 1989] and multiple-priors
[Bewley 1986; Gilboa and Schmeidler 1989]. However, in cases of
ignorance, CBDT is a viable alternative to the EUT paradigm.

Classifying problems based on their novelty, one may consider
three categories. We suggest that CBDT is useful at the extremes of
the novelty scale, and EUT in the middle. When a problem is
repeated frequently enough, such as whether to stop at a red traffic
light, the decision becomes almost automated and “‘rule-based.”
Such decisions may be viewed as a special type of case-based
decisions. Indeed, a rule can be thought of as a summary of many
cases, from which it was probably derived in the first place.” When

7. See the discussion of “ossified cases” in Riesheck and Schank [1989] and of
induetion and rules in Gilboa and Schmeidler [1993b].
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deliberation is required, but the problem is familiar, such as
whether to buy insurance, it can be analyzed “in isolation™; its own
history suffices for the formulation of states of the world and
perh%ps even a prior, and EUT (or some generalization thereof)
may he cognitively plausible. Finally, if the problem is unfamiliar,
such as whether to get married or to invest in a politically unstable
country, it neads to be analyzed in a context- or memory-dependent
fashion, and CBDT is again a more accurate description of the way
decisions are made.

Reduction of Theories. While CBDT may be a more natural
framework in which to model satisficing hehavior, EUT can be used
ta explain this behavior as well. For instance, the Bayesian-optimal
solution to the famous ‘“‘multi-armed bandit” problem [Gittins
1979] may not ever attempt to choose certain options. In fact, it is
probably possible to provide an EUT account of any application in
which CBDT can be used, by using a rich enough state space and an
elaborate enough prior on it. Conversely, ane may also “simulate’
an expected utility maximizer by a case-based decision-maker
whose memory contains a sufficiently rich set, of hypothetical cases:
given a set, of states of the world () and a set of consequences R, let
the set of actshe A = R = [a:Q) — R}. Assume that the agent hasa
utility function u:R — % and a probability measure p. on (). (Where
Q) is a measurahble space. For simplicity, it may be agsumed finite.)
The corregponding case-based decision-maker would have a hypo-
thetical case for each pair of a state of the world « and an act a:

M = {((w,0),a,0(w)) |0 € Qa € Al

Letting the similarity of the problem at hand to the problem
{w,a) be plw), UV-maximization reduces to expected utility maximi-
zation. (Naturally, if {1 or R are infinite, one would have to extend
CBDT to deal with an infinite memory.) Furthermore, Bayes’
update of the probability measure may also be reflected in the
similarity function: a problem whose description indicates that an
event B C (1 has occurred should be set similar to degree zero to
any hypothetical problem (w,a), where w & B.

Since one can mathematically embed CBDT in EUT and vice
versa, it is probably impossible to choose between the two on the
basis of predicted observable behavior.8 Each is a refutable theory
given a description of a decision problem, where its axioms set the

8. Matsui [1993] formally proves an equivalence result hetween EUT and
CBDT. His construction does not resort to hypothetical cases.
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conditions for refutation. But in most applications there is enough
freedom in the definition of states or cases, probability or similar-
ity, for each theory to account for the data. Moreover, a problem
that is formulated in terms of states has many potential transla-
tions to the language of cases and vice versa. It is therefore hard to
imagine a clear-cut test that will select the “correct’ theory.

To a large extent, EUT and CBDT are not competing theories;
they are different languages, in which specific theories are formu-
lated. Rather than asking which one of them is more accurate, we
should ask which one is more convenient. The two languages are
equally powerful in terms of the range of phenomena they can
describe. But for each phenomenon, they will not necessarily be
equally intuitive. Furthermore, the specific theories we develop in
these languages need not provide the same predictions given the
same obhservations. Hence we believe that there is room for both

languages.

Asymptotic Behavior, One may wonder whether, when the
same problem is repeated over and over again, CBDT would
converge to the choice preseribed by EUT for the one-shot problem
with known probabilities. This does not appear to be the case if we
take CBDT to mean either UJ- or V-maximization.

Consider the following setup: A = {e,d}, s(-,-) = 1. Assume that
nature chooses the outcomes for each act by given distributions in
an independent fashion. That is, there are two random variables
R,,R; such that whenever the agent chooses a (), the outcome is
chosen according to a realization of B, (R;), independently of past
chaices and realizations. Further, assume the following distribu-
tions:

L 06 {100 0.7
R.=1_1 047 Be=]_9o 03"

First consider a U/-maximizer agent. At the beginning, both a
and b have identical (empty) histories, and the decision is arbitrary.
Suppose that the agent chooses a with probability .5, and that R,
resultsin +1. From then on she will choose ¢ as long as the random
walk generated by these choices is positive. Hence there is a
positive probability that she will always choose a. Next consider a
V-maximizer agent. Suppose that she first chose b, and that it
resulted in the outcome —2. From that stage on this agent will
always choose a.

Thus, for both decigion rules we find that there is a positive
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probability that the agent will not maximize the “‘real” expected
utility even in cases where objective probabilities are defined.
Arguably, it is in these cases that EUT is most appealing. However,
in Gilboa and Schmeidler [forthcoming] we show that, if the
aspiration level is adjusted in an appropriate manner over time,
U-maximization will converge to expected & maximization in the
long run.?

Hypothetical Reasoning. Judging the cognitive plausibility of
EUT and CBDT, one notes a crucial difference between them:
CBDT, as opposed to EUT, does not require the decision-maker to
think in hypothetical or counterfactual terms. In EUT, whether
explicitly or implicitly, the decision-maker considers states of the
world and reasons in propositions of the form, “If the state of the
world were  and I chose a, then r would result.” In CBDT no such
hypothetical reasoning is assumed.

Similarly, there is a difference between EUT and CBDT in
terms of the informational requirements they entail regarding the
utility function: to “implement” EUT, one needs to know the
utility funetion u, i.e., its values for any consequence that may
result from any act. For CBDT, on the other hand, it suffices to
know the u-values of those outcomes that were actually
experienced.

The reader will recall, however, that our axiomatic derivation
of CBDT involved preferences among hypothetical act profiles. It
might appear therefore that CBDT is no less dependent on
hypothetical reasoning than EUT. But this conclusion would be
misleading. First, one has to distinguish between elicitation of
parameters by an outside observer, and application of the theory by
the agent herself. While the elicitation of parameters such as the
agent’s similarity function may involve hypothetical questions, a
decision-maker who knows her own tastes and similarity judg-
ments need not engage in any hypothetical reasoning in order to
apply CBRDT. By contrast, hypothetical questions are intrinsic to
the application of EUT.

Second, when states of the world are not naturally given, the
elicitation of beliefs for EUT also involves inherently hypothetical
questions. Classical EUT maintains that no loss of generality is
involved in assuming that the states of the world are known, since

9. It was pointed out to us by Avraham Beja that, should one adapt our madel
to derive the utility function 1 axiomatically, the latter may or may not coincide
iavith von-Neumann-Morgenstern utility function derived from choices among
otteries.
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one may always define the states of the world to be all the functions
from available acts to conceivable outcomes. This view is theoreti-
cally very appealing, but it undermines the supposedly behavioral
foundations of Savage’s model. In such a construction, the set of
“conceivable acts” one obtains is much larger than the set of acts
from which the agent can actually choose. Specifically, let there be
given a set of acts A and a set of outcomes X. The states of the world
are X4, Le., the functions from acts to outcomes. The set of
conceivable acts will be A = X&*), that is, all functions from states
of the world to outcomes. Hence the cardinality of the set of
conceivable acts A is by two orders of magnitude larger than that of
the actual ones A. Yet, using a model such ag Savage’s, one needs to
assume a (complete) preference order on A, while in principle
preferences can be observed only between elements of A. Differ-
ently put, such a “canonical construction’ of the states of the
world gives rise to preferences that are intrinsically hypothetical,
and is a far cry from the behavioral foundations of Savage's
original model.

In summary, in these problems both EUT and CBDT rely on
hypothetical questions or on ““cantingency plans” for elicitation of
parameters. The Savage questionnaire to elicit EUT parameters
will typically involve a much larger and less intuitive set of acts
than the corresponding one for CBDT. Furthermore, when it
comeg to application of the theary, CBDT clearly requires less
hypothetical reasoning than EUT.

Cognitive and Behavioral Validity, CBDT may reflect the way
people think about certain decision problems hetter than EUT. But
many economists would argue that we should not care how agents
think, as long as we know how they behave. Moreover, they would
say, Savage’s behavioral axioms are very reasonable; thus, it is very
reasonable that people would behave as if they were expected
utility maximizers. However, we claim that behavioral axioms
which appear plausible assuming the EUT models are not as
convincing when this very model is unnatural. For instance,
Savage's “sure-thing principle” (his axiom P2) is very compelling
when acts are given as functions from states to outcomes. But in
examples such ag 2 and 3 in the Introduction, outcomes and states
are not given, and it is not clear what all the implications of the
sure-thing principle are. It may even be hard to come up with an
example of acts that are actually available in these examples, and
such that the sure-thing principle constrains preferences among
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them. It ig therefore not at all obvious that actual hehavior would
follow this seemingly very compelling principle. More generally,
the predictive validity of behavioral axioms is not divorced from the
cognitive plausibility of the language in which they are formulated.

V. APPLICATIONS

This section is devoted to economic applications of case-based
decision theory. All we could hope to provide here are some sketchy
illustrations, which certainly fall short of complete models. Qur
goal is merely to suggest that CBDT may be able to explain some
phenomena in a simpler and more intuitive way than EUT.

V.1. To Buy or Not to Buy

Consider the following example. A firm is about to introduce
two new products (1,2} into a market. When product { is intro-
duced, the consumers face a decision problem p;, with two possible
acts {a,b}, where b stands for buying the product and a for
abstaining from purchase. A consumer’s decision to buy product i,
say, a cereal or a soup, implies consumption on a regular basis in
given quantities. The consumers are familiar with product 0 of the
same firm. Product 1 is similar to both products 0 and 2, but the
latter are not similar to each other. Finally, each consumer will
derive a positive utility level from each product consumed.

In this case, the order in which the products are introduced
may make a difference. If the firm introduces product 1 and then
product 2, both will be purchased. However, if product 2 is
introduced first, a consumer’s memory contains nothing that
resembles it at the time of decision. Thus, her choice between a and
b will be arbitrary, and she may decide not to buy the product. Asa
result, we expect a lower aggregate demand for product 2 if it is
introduced first than if it is introduced after product 1.

While EUT-based models could also provide such behavioral
predictions, we find it more plausible that consumer decisions are
directly affected by perceived similarities. Indeed, advertising
techniques often seem to exploit and even manipulate the consum-
er’'s similarity judgments.

V.2. Reputation

Case-based consumer decisions give rise to aspects of reputa-
tion quite naturally. Consider a model with two products and two
firms. Assume that product 1 is produced only by firm A. Product 2
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is new. It ig produced by both firms A and B. Other things being
equal, firm A will have an edge in market 2 if it satisfies consumers’
expectations in market 1 {.e., if J{A) > (). Thus, one would expect
successful firms to enter new markets even if the technology
needed in them is completely different from that used in the
traditional ones.

An EUT explanation of the role of reputation would typically
involve consumers’ beliefs about the firms’ rationality, as well as
beliefs about the firms’ beliefs about consumers. CBDT makes
much weaker rationality assumptions in explaining this
phenomenaon.

V.3. Introductory Offers

Another phenomenon that is close in nature is the introdue-
tion of new products at discounted rates. Again, one may explain
the optimality of such marketing policies with “fully rational®
expected utility consumers. For instance, in the presence of
experimentation cost or risk aversion, a fully rational consumer
may tend to buy the product at the regular price after having
bought it at the introductory (lower) price. Yet if consumers are
case-based decision-makers, the formation of habits is a natural
feature of the model.

VI. VARIATIONS AND FURTHER RESEARCH

Memory-Dependent Similarity. In reality, similarity judg-
ments may depend on the results obtained in past cases. For
instance, the agent may realize that certain attributes of a problem
are more or less important than she previously believed. In Gilboa
and Schmeidler [1994b] we dub this phenomenon “‘second-order
induction,”’ and discuss the relationship between CBDT and the
process of induction in more detail.

When similarity is memory-dependent, two assumptions of
our model may be viclated. Firat, the separability axiom A4 may
fail to hold. Second, the assumption that acts are ranked based on
their act profiles may alsa be too restrictive. Specifically, the choice
among acts need not satisfy independence of irrelevant alterna-
tives, and it therefore cannot be represented by a binary relation
over act proftles. Thus, CBDT in its present form does not describe
how agents learn the similarity function.

Similar Acts. In certain situations, an agent may have some
information regarding an act without having tried it in the past.
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For instance, the agent may consider buying a house in a neighbor-
hood where she has owned a house hefore. The experience she had
with a different, but similar, act is likely to color her evaluation of
the one now available to her. Furthermore, some acts may involve a
numerical parameter, such as “Offer to sell at a price p.”” One
would expect the evaluation of such acts to depend on past
performance of similar acts with a slightly different value of the
parameter.

These examples suggest the following generalization of CBDT:
consider a similarity function over (problem,act) pairs; given a
certain memory and a decision problem, every act is compared—in
conjunction with the current problem—to ell (problem,act) pairs
in memory, and a similarity weighted utility value is computed for
it. Maximization of such a function is axiomatized in Gilboa and
Schmeidler [1994a].

Act Generation. It is often the case that the set of available
acts is not naturally given and has to be constructed by the agent.
CBDT as presented here iz not degigned to deal with these
problems, and it may certainly benefit from insights into the
process of “act generation.” In particular, the vast literature on
planning in artificial intelligence may prove relevant to modeling of
decision-making under uncertainty.

Changing Utility. The framework used in Section IT, in which
autcomes are identified with utility levels, is rather convenient to
convey the main idea, but it may also be misleading: it entails the
implicit assumption that the utility function does not depend on
the memory M, on time {which may be implicit in M}, and so forth.

There may be some interest in a more general model, where
the utility is allowed to vary with memory. In particular, the utility
scale may “‘shift” depending on one’s experience. Recall that the
utility is normalized so as to set u(ry) = 0. As mentioned above, one
may refer to this value as the aspiration level of the decision-
maker. A shift of the utility function is therefore equivalent to a
change in the agent’s aspiration level.

Adopting this cognitive interpretation, it is indeed natural that
the aspiration level be adjusted according to past achievements. In
Gilboa and Schmeidler [1994a] we axiomatize a family of decision
rules that allow the aspiration level to be a linear function of the
outcomes experienced in the past. However, some applications may
resort. to nonlinear adjustment rules as well. (See, for instance,
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Gilboa and Schmeidler [forthcoming].) The axiomatic foundations
of aspiration level adjustments therefore call for further research.

Normative Interpretation. Our focus in this paper is on CBDT
as a descriptive theory, which, for certain applications, may be
more successful than EUT. Yet, in some cases CBDT may also be a
more ugeful normative theory. While we share the view that it is
desirable and ‘“more rational” to think about all possible scenarios
and reason about them in a consistent way, we also hold that a
normative theory should be practical. For instance, if the state
space is huge, and the agent does not entertain probabilistic beliefs
aver it, telling her that she ought to have a prior may he of little
help.

If we believe that, in a given problem, applying EUT is not a
viable option, we might at least attempt to improve case-hased
decisions. For instance, one may try to change one's similarity
function so that it be symmetric, ignore primacy and recency
effects (i.e., resist the tendency to assign disproportionate similar-
ity weights to the first and the most recent cases), and go forth. It
might even be argued that it is more useful to train professionals
(doctors, managers, etc.) to make efficient and probably less biased
case-based decisions rather than to teach them expected utility
theory. However, such claims and the research that is needed to
support them are beyond the scope of this paper.

Welfare Implications. A cognitive interpretation of CBDT
raises some welfare questions. Is a satisficed individual ““happier”
than an unsatisficed one? Should the former be treated as richer
simply because she has a lower aspiration level? Should we strive to
increase people’s aspiration levels, thereby prodding them to
perform better? Or should we lower expectations so that they are
content? We do not dwell on these questions here, partly because
we have no answers to offer.

Strategic Aspects. In a more general maodel, one may try to
capture manipulations of the similarity function. In phenomena as
diverse as advertising and legal procedures, people try to influence
other peaoples’ perceived similarity of cases. Moreover, an agent
may wish to expose other agents to information selectively, in a
way that will bring about certain modes of behavior on their part.

Procedures of Recall. CBDT may greatly benefit from addi-
tional psychological insights into the structure of memory and
from empirical findings regarding the recollection process. For
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instance, one may hypothesize that the satisficing nature of
decision-making is revealed not only in a dynamic context, but also
within each decision: rather than computing the {7-value of all
possible acts, the agent may stop at the first act which obtains a
positive U-value, There are, however, several ways in which “first”
could be defined. For example, the agent may ask herself, “When
did I choose this act?"’ and only after the evaluation of a given act
will the next one be considered. Alternatively, she may focus on the
problem and ask, “When was I in a similar situation?”’ and as the
cages are retrieved from memory one by one, the function U is
updated for all acts—until one act exceeds the aspiration level.
These two models induce different decision rules.

Similarly, insight may be gained from analyzing the structure
of a “decision problem” and the corresponding structure of the
similarity function in specific contexts. Some psychological studies
relating to this problem are Gick and Holyoak [1980, 1983] and
Falkenhainer, Forbus, and Gentner [1989].

Other Directions. The model we present here should be taken
merely as a firgt approximation. Just as EUT encountered the
“paradoxes” of Allais [1953]) and of Ellsherg [1861], the linear
functional we propose here is likely to be found too restrictive in
similar examples. Correspondingly, almost every generalization of
EUT may have a reasonable counterpart for CBDT.

The main goal of this paper was to explore the possibility of a
formal, axiomatically based decision theory, using a less idealized
and at times more realistic paradigm than EUT. We believe that
case-based decision theory is such an alternative.

APPENDIX 1: Proor oF THEQREMS

Regarding both theorems, the fact that the axioms are neces-
sary for the desired representation is straightforward. Similarly,
the uniqueness of the similarity functions is simple to verify. We
therefore provide here only proofs of sufficiency, that is, that our
axioms imply the numerical representations.

Proof of Theorem 1. Fix p, H, and denote =- = =, 4. We also
use the notation X = ## and identify it with & for n = |H|.
W.lo.g. assume that H = &. First, note the following.

Observation If >- satisfies Al and A4, then
(i) forallx,ye Xwithxsy =0,x =y & —y > —x;
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(i} for all x,y,zw € X with x2y = 0, (x + 2)*(y + w) = 0 and
z=wx 2y e x+z) 2 (y+w.

Proof. (i) Assume that x >-y. Consider z = w = —(x + y),
and use Ad (where z > w follows from Al).
(ii) Under the provisions of the claim, z = w, and A4
implies thatx >-y = (x + 2) > (y + w).
As for the converse, definez’ = —zand w’ = —w. By (i),
—z = —w. Thus, A4 can be used again to concludex =-y.

We now turn to the proof of Theorem 1. Define >' C X x Xhy
x2'yex-y) =20 foralle,y e #* = X.

We need several lemmata whose proofs are rather simple. For
brevity's sake we merely indicate which axioms and lemmata are
used in each, omitting the details:

LEMMA L. For x,y € X with x5y = 0, x 2" y iff x =- y (the
observation above).

LeMMA 2. >’ is complete, e, forallx,y EX,x =’ y, ory =’ x (the
definition of >’ and Al}.

LEMMA 3. ='istransitive (the definition of >' and A4).

LEMMA 4. >' is monotone, i.e,, for all x,y € X, x = y implies that
x =’y (the definition of >’ and A2).

LEMMA 5. =’ is continuous, ie., for all x € X the sets {y €
X|y ='x},[y € X|x =’ y}are closed in #* (the definition
of =' and A3}. (In view of Lemma 2, this is equivalent to
the sets {y € X|y >’ x|, {y € X|x >y} being open.)

LEMMA 6. =’ satisfies the following separability condition: for all
xyz € X x > yif and only if (x + 2) =' (y + 2) (the
definition of =').

LEMMA 7. =' satisfies the following condition: for all x,y,2,w € X, if
x='yandz ='w, then (x + z) =’ (y + w) (the definition
of =" and A4).

Lemma 8. Ifx ='y, thenx =’ (x + y)/2 =’y (Lemmata 2, 3, and 6).

LeMMA 9. Ifx > yand o« € (,1), thenx =" ax + (1 —aly =" ¥
(successive application of Lemma 8, in conjunction with
Lemmata 3 and 5).
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LEMMA 10. Foreveryx € X, thesets(y € X|y =" x},{y € X|x 2'y],
{y €X|y > x}, and {y € X|x >’ y} are convex. (Lem-
mata 3 and 9).

LemMa 11. Define A = x&€X|x >0} and B = {x € X|0 >’ x)
(where, as above, 0 denotes the zero vector in X = .%).
Then A is nonempty, closed and convex; B is apen and
convex; AN B = J; and A U B =" (Lemmata 2, 5, and
10).

LEmMa 12, If B = &, the function s(:) = 0 satisfies the representa-
tion condition. If B # (J, there exist a nonzero linear
functional S: 2" — % and a numbher ¢ € . such that

S(x} = eforallx € A
S(x) < cforalilx& B

(in view of Lemma 11, a standard separating-plane
argument),

LEMMa 13. In the case B = @, the constant ¢ in Lemma 12 is zero,
hence Six) > 0 if and only if x € A (¢ < 0 follows from
Lemma 2; ¢ > 0is a result of Lemma 7).

By Lemmata 1 and 7, for every compatible x,y € X, x > y iff
(x —y) =" 0,ie,iff (x — y}) € A. If B = &, Lemma 12 concludes the
proof. If B # J, the function s: H — % defined by S satisfies the
desired representation by Lemma 13. Furthermore, it is nonega-
tive by Lemma 4.

Remark. Note that we have also proved that Al, A3, and A4
are necessary and sufficient for a numerical repregentation as in
(), where the similarity function s is not restricted to be
nonnegative.

Proof of Theorem 2. Theorem 1 guarantees that for every p €
P and H C P with p & H there exists a function sy(P,-) = 8, 1)
H — #, such that

X zopy iff 2 spipgliq) = E su(p.g)yiq)
qEH q=H

for every compatible x,y € 5%, We wish to show that for everyp €
P there is a single function &(p,) satisfying the condition above for
every history HC P\[p].

Theorem 1 also states that each of the functions sy{(p,) is
unique, but only up to a positive multiplicative scalar. Thus, it
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suffices to show that for every p € P there exists a function s(p,'),
such that for every H C P\[p] there exists a coefficient A,z > 0
such that

s(p,q) = N psu(pg) forallg € H.

Fix a problem p € P. We first define the function s(p,"), and
will then show that there are coefficients A, > 0 as required. Set
HY = P\[p}. Since P is finite, so is H 9. We set

8(p,q) = spo(p,q)  forallg = p.

(One may generalize our results to an infinite set of problems, out
of which only finitely many may appear in any history. In this case
one may not use a maximal finite H C P\{p}. Yet the proof proceeds
in a similar manner. The only major difference is that the resulting
similarity funetion may not be bounded.)

We will now show that for every H, the function sy(p,)
provided by Theorem 1 is proportional to s(p,:) on the intersection
of their domains, namely H. Let there be given any nonempty H C
P\[p}. (The case H = <J is trivial.} It will be helpful to explicitly
state two lemmata:

LEmMa 1. Foreveryg € H, sy(p,q) = 0iff spo(p,q) = 0.

Proof. Use axiom A5 with H' = HY, H*=H,q, =g, =q,x =
y=0(n#"),z=w=0(@(n#H) anda # B = 0.

LEMMA 2, Foreverygi,qg;, € H, with sy(p,q,} > 0,
su(pqa) sa0(p.gs)
sulpql)  Spolpgi)’

Proof. Use axiom AS with H! = A, H*=H, x =y = { (in
"), 2 = w = 0 (in F¥), a = syo(p,gs) and B = syo(p,q1).

We now turn to define the coefficients A,;. Distinguish
between two cases.

CaAsSE 1. sy(p,- ) =0.
In this case, by Lemma 1, s(p,q) = spp(p,q} = O for every
q € H.Hence any A, i > O will do.

Case 2, sy(p,q) > 0forsomeq € H.
In this case, choose such a g, and define A, 5 = [sx(p,q)/
sg(p,q)] > 0. By Lemmata 1 and 2, X, g is well defined.
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Furthermore, it satisfies
N asH(p.q) = sp(pg) = s(pg) forall g € H.
This completes the proof of Theorem 2.

APPENDIX. 2: AN ALTERNATIVE MODEL

In this appendix we outline the axiomatic derivation of case-
based decision theory where the similarity function depends not
only on the problems encounted in the past, but also (potentially)
on the acts chosen in these problems. We also show that
V-maximization can be axiomatically derived.

We assume that the sets P, A, R, C, and M are defined and
interpreted as in Section II. Given a problem p € P and memory
M C C, we define the sets of (problem,act} pairs encountered, the
set of problems encountered, and the set of acts chosen, respec-
tively, to he

E =EM) ={(q,a)|3 r € R,q,ar) €M}
H=HM) = (g€ Pl3aEAlqa) EE}

and
B=BM)={a€ A|dqE Pq,a) EE]

For each a € B, let H, denote the set of problems in which a
was chosen; ie, H, = {g € H|{(g,a) € E}. Let F, be the set of
hypothetical acts, i.e., all the act profiles an actual act a could have
had: F, = {x|x: H, — $#}. (Again, we identify the set of outcomes R
with the real line and implicitly assume that it is measured in
utiles.) We assume that |B| = 2and define F = U, F,.

For every p,E (with |B| > 2) weassumethat >, CF X Fisa
binary relation satisfying the following axioms, For simplicity of
notation, >,  will also be denoted by = whenever possible.

Al’. ORDER. =- is reflexive and transitive, and for every a,b € B,
a=bxEF,andyEF, x> yory = x.

A2’ CONTINUITY AND COMPARABILITY. For everyab € B,a = b and
everyx € F,, the sets {y € Fyly >-x} and {y € Fylx >- y] are
nonempty and open (in F, endowed with the standard
topology).

A2' entails a “continuity” requirement by stipulating that
these sets be open; the fact that they are also assumed nonempty is
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an Archimedian condition which guarantees that the similarity
function will not vanish on H, for anya € B.

A3'. MoNoToNICITY. ForeveryvabeB,a= b xz€F,, andy € F,,
ifx > zthenz >-y implies thatx >-y, andy > x implies thaty
2"z,

A4’ SEPARABILITY. Foreverya b€ B,a = b,x,z2 EF,andy,w € F,
ifz =-w,thenx 2y = (x +2) > (¥ + w).

TureoreM A2.1. The following two statements are equivalent:

(i) foreverypand E, > = =,z satisfies A1'-A4’;
(ii) for every p and E there exists a functions =s,5: H > %,
such that

—foralla € B, ey s(q} > O
and
—foralla=b,xEF,,yEF,

X Z,py © D slg)elg) = 2, si@iyg).
qcH, gEH
Furthermore, in this case, for every p and E, the function s =
8p,g i unique up to multiplication hy a positive scalar.

Ngote that Al’ requires that >- be transitive, which implies
that acts belonging to the same space F, be comparable. However, if
|B| = 3, one may start out by assuming that transitivity holds oniy
if all pairs compared belong to different spaces, and then consider
the transitive closure of the original relation.

Proof (Outline). Fix a € B, and consider the restriction of =-
to F,. It is easy to see that on F,, > is complete (hence a weak
order}, continuous and monotone (in the weak sense, ie, x > 2
implies thatx =-2).

Finally, ifx,y,z € F,, we get

x2y iff E+zz=-@+2.

We therefore conclude that for every @ € B there is a function
s, : H, = Z#, such that for all x,y € F,,

x>y e X slgx = EH 3.(q)y(q).
qEHg

gEH,
Furthermore, by A2', >- is nontrivial on each F,, hence for
some g € H,, s5,(g) > 0.
Thus, we have a numerical, additively separable representa-
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tion of >- on each F, separately. To obtain a global representation,
compating act profiles of different acts, we need to “calibrate’ the
various similarity functions {s,},c4, each of which is unique up to a
positive multiplicative scalar.

One natural way to perform this calibration is to compare
“constant” act profiles. That is, let I, denote the element of F,
consisting of I's only (1,(g) = 1 for all ¢ € H,}. Fixa € B, and for
each b € B let §, satisfy

Ia = 851[5.

Defines : H— %, by

sy(q)

S(Q) = 8;. Zq-EHb sb(q’)

for all ¢ € H;. Observe that s is proportional to s, on H,, for each b €
B. Thus, the s-weighted utility represents =: on F;. Furthermore,
the calibration above guarantees that, if x € F, and y € F;, are two
constant act-profiles,

22y e D 8@ = D s)g) ¥
gEH, q=Hy

To see that this representation holds in general, one may find
for each act profile x € F, a constant act profile ¥ € F, such that
x =% and complete the proof using transitivity of =-.

Finally, it is straightforward to verify that the axioms are also
necessary, and that the similarity function ig unique up to a
positive multiplicative scalar.

To obtain the representation hy the functional V in (s+),
consider the following axiom.

A6. EXPERIENCE INVaRIANCE. Forallabe B, 1, =- 1,

Without judging its reasonability, we note that A6 means that
the “quality” of the experience is all that matters, rather than its
“quantity.” Specifically, imposing A6 on top of Al'~-A4’ guarantees
that in the construction of s above, 8, = 1 for all b € B. Thus, if two
acts always yielded the same result, they would be equivalent,
regardless of the number of times each was chosen. Preferences
satisfying A6 focus on the “average performance’ of each act,
disregarding any accumulated measures of performance. In other
words, A1'-A4’ and A6 are necessary and sufficient conditions on
= to be representable by a functional V as in (s«#) for given p,E. (To
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obtain the V representation uging a single gimilarity function
s(pg) for all sets E, one needs to impose an additional axiom
corresponding to A5.) Formally,

CoroLLARY A2.2. The following two statements are equivalent:

(i) foreveryp and E, >- = >, g satisfies A1'-A4" and A6;
(ii) for every E there exists a function sg : H° x H — %, such
that for everyp ¢ H.
—foralla € B, 3 cq sp(p,q) = 1;
and

—foralla = b,x € F,,andy € F},

XZppy < 2 sg(p.glxiq) = 2 sg(p.@ylq).

g€, gty

Furthermare, in this case, for every E, the function sg is
unique.

Note that the average performance as measured by V may still
be a weighted average. One may further demand that =- satisfy the
following axiom:

A7T. CONSTANT SIMILARITY. For everyab € B,a = b, q,¢' € H,,
x e Fb,

Ug 2 X iff v, zx,
where vy,v, stand for the corresponding unit vectors in F,.

It is rather straightforward to show that A1’-A4', A6 and A7
are necessary and sufficient conditions for =- to be representable
by a simple average. Specifically, if a preference order which is
representable by V also satisfies A7, the intrinsic similarity func-
tion s in (+#) (before normalization} is constant, and the functional
V reduces to the simple average utility each act has vielded in the
past. Formally,

CoroOLLARY A2.3. The following two statements are equivalent:

(i) foreverypand E, > = =, satisfies Al'-A4’, A6 and AT;
(ii) foreverypand E, foralla # b, x EF,,y € F,

quHa x(q) . quHby(Q)
|Ho| [ H

X Z,rY =
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